🤖 Large Language Models (LLMs)
Welcome to the Large Language Models section of the AI Engineering Academy! This module provides a comprehensive understanding of LLMs and their practical applications in AI engineering.
📚 Repository Structure
Model/Directory | Description & Contents |
---|---|
Axolotl | Framework for fine-tuning language models |
Gemma | Google's latest LLM implementation |
- finetune-gemma.ipynb - gemma-sft.py - Gemma_finetuning_notebook.ipynb |
Fine-tuning notebooks and scripts |
LLama2 | Meta's open-source LLM |
- generate_response_stream.py - Llama2_finetuning_notebook.ipynb - Llama_2_Fine_Tuning_using_QLora.ipynb |
Implementation and fine-tuning guides |
Llama3 | Upcoming Meta LLM experiments |
- Llama3_finetuning_notebook.ipynb |
Initial fine-tuning experiments |
LlamaFactory | LLM training and deployment framework |
LLMArchitecture/ParameterCount | Technical details of model architectures |
Mistral-7b | Mistral AI's 7B parameter model |
- LLM_evaluation_harness_for_Arc_Easy_and_SST.ipynb - Mistral_Colab_Finetune_ipynb_Colab_Final.ipynb - notebooks_chatml_inference.ipynb - notebooks_DPO_fine_tuning.ipynb - notebooks_SFTTrainer TRL.ipynb - SFT.py |
Comprehensive notebooks for evaluation, fine-tuning, and inference |
Mixtral | Mixtral's mixture-of-experts model |
- Mixtral_fine_tuning.ipynb |
Fine-tuning implementation |
VLM | Visual Language Models |
- Florence2_finetuning_notebook.ipynb - PaliGemma_finetuning_notebook.ipynb |
Implementations for vision-language models |
🎯 Module Overview
1. LLM Architectures
- Explore implementations of:
- Llama2 (Meta's open-source model)
- Mistral-7b (Efficient 7B parameter model)
- Mixtral (Mixture-of-experts architecture)
- Gemma (Google's latest contribution)
- Llama3 (Upcoming experiments)
2. 🛠️ Fine-tuning Techniques
- Implementation strategies
- LoRA (Low-Rank Adaptation) approaches
- Advanced optimization methods
3. 🏗️ Model Architecture Analysis
- Deep dives into model structures
- Parameter counting methodologies
- Scaling considerations
4. 🔧 Specialized Implementations
- Code LLama for programming tasks
- Visual Language Models:
- Florence2
- PaliGemma
5. 💻 Practical Applications
- Comprehensive Jupyter notebooks
- Response generation pipelines
- Inference implementation guides
6. 🚀 Advanced Topics
- DPO (Direct Preference Optimization)
- SFT (Supervised Fine-Tuning)
- Evaluation methodologies
🤝 Contributing
We welcome contributions! See our contributing guidelines for more information.
📚 Resources
Each subdirectory contains detailed documentation and implementation guides. Check individual README files for specific instructions.
📝 License
This project is licensed under the MIT License - see the LICENSE file for details.
Made with ❤️ for the AI community