RAG (Retrieval Augmented Generation) System Implementation GuideΒΆ
Welcome to the comprehensive guide for implementing RAG systems! This repository provides a structured approach to building and optimizing Retrieval Augmented Generation systems, from basic implementations to advanced techniques.
Repository StructureΒΆ
Core ModulesΒΆ
FundamentalsΒΆ
- RAG from Scratch
- Complete implementation guide from ground up - RAG in 10 lines of code - Understanding embeddings and similarity - Basic requirements setup
Basic Implementation & EvaluationΒΆ
-
- Basic server implementation - Jupyter notebook tutorials - Performance evaluation notebooks - Environment setup guide
-
- BM25 algorithm implementation - Application setup - Interactive notebook examples
-
- Data chunking strategies - Embedding generation - Batch processing examples - Data parsing techniques
-
- RAGAS metrics implementation - Deepeval integration - TruLens evaluation - Test dataset examples
-
- System monitoring setup - Performance tracking - Debug tools integration
Advanced TechniquesΒΆ
-
- Result re-ranking implementation - Evaluation metrics - Performance optimization
-
- Qdrant hybrid search implementation - Multiple retrieval method integration
-
- Context window optimization - Sentence-level retrieval
-
- Automatic content merging - Redundancy elimination
-
- HyDE (Hypothetical Document Embeddings) - Query transformation techniques - Query optimization strategies
Specialized ImplementationsΒΆ
-
- Self-querying mechanisms - Query refinement techniques
-
- Multiple RAG model integration - Result fusion strategies
-
- Advanced reasoning implementation - Performance optimization
-
- ColBERT model integration - Ragatouille retriever implementation
-
- Graph-based retrieval - Knowledge graph integration
-
- Multi-document agent system - Domain-specific implementations
-
Vision RAG - GPT-4V integration - Multi-modal retrieval implementation
π Data ResourcesΒΆ
Located in the data/
directory:
- Markdown Documents (
md/
): Processed markdown versions of papers - PDF Documents (
pdf/
): Original research papers and documentation - Sample Database (
sample-lancedb/
): Example database implementation
π― Implementation TechniquesΒΆ
β Implemented FeaturesΒΆ
- Simple RAG with vector store integration
- Context enrichment algorithms
- Multi-faceted filtering systems
- Fusion retrieval mechanisms
- Intelligent reranking
- Query transformation
- Hierarchical indexing
- HyDE implementation
- Dynamic chunk sizing
- Semantic chunking
- Context compression
- Explainable retrieval
- Graph RAG implementation
- RAPTOR integration
π οΈ Tech StackΒΆ
- π¦ RAG Orchestration: Llama-index
- π Vector Database: Qdrant
- ποΈ Observability: Arize Phoenix
- π Evaluation: RAGAS & Deepeval
π€ ContributingΒΆ
We welcome contributions! Please see our contributing guidelines for more information.
π ReferencesΒΆ
This project builds upon research and implementations from various sources. See our acknowledgments section for detailed credits.
π LicenseΒΆ
This project is licensed under the MIT License - see the LICENSE file for details.
Made with β€οΈ for the RAG community